
VeriStand Custom Device Handbook
Release 1.0.0

NI

Jan 11, 2022





CONTENTS

1 Introduction 1

2 Implement the Custom Device 35

3 Debugging and Benchmarking 65

4 Distributing the Custom Device 69

5 Custom Device Tips and Tricks 71

i



ii



CHAPTER

ONE

INTRODUCTION

1.1 Introduction to Custom Devices

VeriStand is an open software environment you can use to configure real-time testing applications, including hardware-
in-the-loop (HIL) systems.

With VeriStand, you can complete the following objectives.

• Configure real-time input/output (I/O), stimulus profiles, data logging, alarming, and other tasks.

• Implement control algorithms or system simulations by importing models from a variety of software environ-
ments.

• Build test system interfaces quickly with a run-time editable user interface complete with ready-to-use tools.

For more information on VeriStand, refer to the NI Developer Zone tutorial What is NI VeriStand?

You can customize and extend the VeriStand environment with LabVIEW to meet application requirements. This
document provides the background, design decisions, and technical information required to understand and develop
custom devices in VeriStand.

Before you begin creating a custom device, you must understand the VeriStand Engine. For more information on the
VeriStand Engine refer to the VeriStand Manual.

1.1.1 What is a Custom Device?

While VeriStand provides most of the functionality required by a real-time testing application, the environment can be
customized to meet application requirements.

Custom devices are one way to extend VeriStand. For more ways to customize NI VeriStand, refer to the NI Developer
Zone tutorial Using LabVIEW and Other Software Environments with NI VeriStand.

Developers can use custom devices to dictate how VeriStand executes. Any LabVIEW callable code can be made into
a custom device. Custom devices allow customization to the operator interface within System Explorer.

Custom devices can display many different configuration experiences. This include simple controls on a VI front panel,
pop-up windows and silent routines to scrape the configuration from a database.

A custom device typically consists of an XML file and two VI libraries. The following chart displays the organizational
structure of a custom device LabVIEW project.

1

https://www.ni.com/en-us/shop/data-acquisition-and-control/application-software-for-data-acquisition-and-control-category/what-is-veristand.html
https://www.ni.com/documentation/en/veristand/latest/manual/vs-engine/
https://www.ni.com/ro-ro/innovations/white-papers/09/using-ni-veristand-with-other-software-environments-to-create-re.html
https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/lv_file_extensions/


VeriStand Custom Device Handbook, Release 1.0.0

The XML file tells VeriStand how to load, display, use and deploy the device. The VI Libraries define the behavior of
the device. One library is for configuration and the other is for the engine.

Custom devices can be created by NI, 3rd parties, and in-house developers. The developer builds the configuration and
engine library, and the XML file from Source Distributions in LabVIEW.

Most custom devices begin as a LabVIEW template project. The latest niveristand-custom-device-wizard release
scripts the template project based on user inputs. You can then modify the template project to fulfill the requirements
of the custom device.

A LabVIEW project is needed to build a custom device, but only the configuration library, engine library and XML
file are required to use the custom device in VeriStand.

After obtaining (or building himself) the custom device’s libraries, the operator places them in the VeriStand
<CommonData>\Custom Devices directory. This directory location varies with the host operating system.

1.1.2 Table of Directories and Aliases:

The following tables list paths to common VeriStand directories by operating system. The heading before each table
indicates how NI documentation refers to the directory. For directories with aliases listed, the alias is the text that
appears with a relative path in an API or XML file. This text defines the directory that the path is relative to.

<Common Data> Alias: To Common Doc Dir
Windows <Public Documents>\National Instruments\NI VeriStand <xxxx>

<Application Data> Alias: To Application Data Dir
Windows <Application Data>\National Instruments\VeriStand

2 Chapter 1. Introduction

https://zone.ni.com/reference/en-XX/help/371361R-01/lvdialog/source_distrib_db/
https://github.com/ni/niveristand-custom-device-wizard


VeriStand Custom Device Handbook, Release 1.0.0

<Base> Alias: To Base
Windows <Program Files>\National Instruments\VeriStand <xxxx>

<Custom Device Engine Destination> Alias: To Base
Linux c:\ni-rt\NIVeriStand\Custom Devices\<custom device name>\

Note: <xxxx> is the VeriStand version number.

VeriStand parses Common Data\Custom Devices for custom device XML files when it first launches. You must
restart VeriStand to recognize newly added or modified custom device XML files.

Add the custom device to the system definition in the configuration tree by navigating to System Definition » Targets
» Controller and right-clicking Custom Devices.

Custom devices consist of three parts.

• Custom Device Framework

• Custom Code

• Custom Device XML File

1.1.3 Custom Device Framework

The custom device framework consists of type definitions, specifically named controls and indicators, template VIs
and a LabVIEW API. Together these items form the rules, or framework, that allows any conforming VI to interact
with VeriStand. There are several prebuilt types of custom devices. Almost any requirement can be accomplished by
adding or modifying code in one of the prebuilt devices.

The prebuilt devices start with the niveristand-custom-device-wizard. The developer specifies the type of custom device
before running the niveristand-custom-device-wizard. The wizard generates the LabVIEW Project for the new custom
device. The exact resources in the project depend on the type of custom device selected.

1.1. Introduction to Custom Devices 3

https://github.com/ni/niveristand-custom-device-wizard


VeriStand Custom Device Handbook, Release 1.0.0

The project is pre-populated with VIs, LabVIEW Libraries, an XML File, and two build specifications. These resources
provide the framework upon which almost all custom devices are built.

VeriStand evolved from NI Dynamic Test Software (NI-DTS). NI-DTS evolved from 3rd party intellectual property
(IP) called EASE. The IP made basic provisions for add-on LabVIEW code.

These provisions could be considered the first custom device framework on which several “custom devices” were built.
If you find a custom device that does not fit the niveristand-custom-device-wizard framework, you may be operating
an EASE based custom devices.

For each type of custom device in the LabVIEW source project, you will find the following.

• An NI VeriStand APIs virtual folder containing two VI libraries called Custom Device API.lvlib and Custom
Device Utility Library.lvlib.

• A <Custom Device Name> VI library.

• A <Custom Device Name> Shared.lvlib VI library.

• A <Custom Device Name> System Explorer.lvlib VI library.

The following image displays a new custom device template project.

4 Chapter 1. Introduction



VeriStand Custom Device Handbook, Release 1.0.0

The Custom Device API library and Custom Device Utility Library contain most of the type definitions, template VIs
and LabVIEW API needed to interact with VeriStand data and timing resources. They allow the VI to behave as a
native task in the VeriStand Engine.

Note: Some of these VIs also appear on the LabVIEW palette in NI VeriStand » Custom Device API.

The API library contains the custom device’s configuration and real-time engine VIs. These correspond to the con-
figuration and engine VI libraries (LLBs). The front panel and block diagram of these VIs are populated with objects
from the Custom Device API libraries.

1.1. Introduction to Custom Devices 5

https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_custom_device_api_vis_pal/


VeriStand Custom Device Handbook, Release 1.0.0

1.1.4 Configuration

The custom device configuration defines how the operator adds and configures the custom device through a user inter-
face (UI). The Custom Device Template Tool provides the Initialization VIs for configuration purposes. You can add
more VIs during development.

When a custom device VI’s front panel is presented to the operator in System Explorer, that VI is called a page. Pages
are a subset of the VIs that make up a custom device.

1.1.5 Initialization VI

The niveristand-custom-device-wizard adds the Initialization VI.vi. inside the Dinamically Called virtual folder of the
<Custom Device Name> System Explorer library. This VI runs in the background when the custom device is first added
to the system definition. The initialization page does not run again unless the operator removes and re-adds the custom
device.

While you may rename certain objects in the custom device’s LabVIEW Project, it’s important to understand the
ramifications of doing so. For example, the Initialization VI is referenced by name in the custom device XML file.

This file is generated when you first run the niveristand-custom-device-wizard. If you rename the Initialization VI after
running the wizard, you’ll need to manually change the path to the Initialization VI in the custom device XML file.

The Initialization Page runs each time a new instance of the same custom device is added to the system definition.
VeriStand retains state information for each instance of a custom device in the system definition (.nivssdf) file.

State is defined by the value of each control, indicator, and property of the page. The system definition is human-
readable XML, so you can open the file with a text editor.

Note: You can use the .NET API to programmatically modify the system definition.

1.1.6 Main Page

The niveristand-custom-device-wizard creates Main Page.vi inside Dynamically Called virtual folder of the <Custom
Device Name> System Explorer library. After the custom device has been added to the system definition, the Main
Page runs whenever the operator clicks on the custom device’s top-level item in the System Explorer configuration tree.
The following image displays the top-level item.

6 Chapter 1. Introduction

https://www.ni.com/documentation/en/veristand/latest/manual/configure-system-definition-file/
https://www.ni.com/documentation/en/veristand/latest/manual/veristand-net-reference/


VeriStand Custom Device Handbook, Release 1.0.0

1.1.7 Engine

The niveristand-custom-device-wizard creates the RT Driver.vi. inside the <Custom Device Name> Engine library.
This VI defines the behavior of the custom device on the Target.

The RT Driver VI runs on the Target regardless of the operating system. VeriStand deploys the engine when the operator
runs the project from VeriStand or when the system definition is deployed using the VeriStand Execution API.

The engine runs after the custom device deployed to the execution host. You can usually add initialization, steady-state,
and shutdown code to the engine template. There aren’t any hard boundaries on what code you can put into the engine,
but each additional code that is added can increase the size of the engine, and the time required to deploy your system.

Each of the five prebuilt custom devices has a different engine VI. Each engine VI executes at a different time with
respect to other VeriStand components. The timing requirements of a custom device, and thus the type of device
selected, are functions of when the device needs to execute with respect to other VeriStand Engine components.

Not all requirements can be satisfied by one of the five types of prebuilt custom devices. Some custom devices will
require multiple engine libraries. For example, a device may need to support different real-time operating systems. The
NI VeriStand – Set Custom Device Driver VI allows you to programmatically change the driver library for a custom
device.

Some custom devices use the prebuilt template as a launching pad for multiple parallel processes or complex frame-
works. For more information, refer to Beyond the Template Frameworks.

1.1. Introduction to Custom Devices 7

https://www.ni.com/documentation/en/veristand/latest/manual/veristand-glossary/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_custom_device_drivers/


VeriStand Custom Device Handbook, Release 1.0.0

1.1.8 Custom Code

Custom code performs any functionality desired by the custom device developer. While the initialization and engine
frameworks provide access to VeriStand data and timing resources, you must implement the code to meet specification.

For example, custom code can perform a single A/D conversion on a 3rd party digitizer. The framework provides the
means for sending the digitized value to the rest of the VeriStand system so that it can be mapped to a channel or used
in a stimulus profile.

1.1.9 Custom Device XML

Each custom device has an XML file that contains information used by VeriStand to load, configure, display, deploy
and run the device. The basic information includes VI and dependency paths, page names, action items, menu items,
and meta data for the various pages that make up the custom device.

The niveristand-custom-device-wizard generates an XML file in the template LabVIEW Project. Any properly format-
ted XML file will be parsed by VeriStand. After the XML file is created by the Custom Device Template Tool, all
updates have to be manual.

The custom device XML file does not automatically synchronize with changes to the LabVIEW project. Also, the file
does not automatically deploy. You must modify the XML file in the LabVIEW Project directory when making changes.
Building the initialization specification overwrites the XML in the <Common Data>\Custom Devices folder.

The XML file alters the appearance and behavior of the custom device in System Explorer. For example, you can add
a right-click menu to a custom device by adding tags to the custom device XML file.

VeriStand parses <Common Data> for custom devices when it launches. A corrupt custom device XML file can affect
the overall VeriStand system. You should exercise care and make a backup of the custom device XML before modifying
it.

1.2 When do you Need a Custom Device?

VeriStand provides the general functionality required by most real-time (RT) testing applications. However, NI has
designed the VeriStand environment to be customizable to meet any additional application requirements.

The built-in components of a VeriStand Project are listed in the VeriStand Help topic VeriStand Environment. If these
components do not fulfill your specifications, try one of the customization methods in Using NI VeriStand with Other
Software Environments to Create Real-Time Test Applications.

There is a collection of VeriStand add-ons that have been gathered from internal NI developers and the VeriStand
community. You should check for an existing custom device before building one.

There are three specifications that are best-suited for a custom device.

1. 3rd Party Hardware

2. Unsupported Measurement or Generation Mode

3. Feature

8 Chapter 1. Introduction

https://www.ni.com/documentation/en/veristand/latest/manual/environment/
https://www.ni.com/en-us/innovations/white-papers/09/using-ni-veristand-with-other-software-environments-to-create-re.html
https://www.ni.com/en-us/innovations/white-papers/09/using-ni-veristand-with-other-software-environments-to-create-re.html
https://www.ni.com/en-us/support/documentation/supplemental/15/veristand-add-ons.html


VeriStand Custom Device Handbook, Release 1.0.0

1.2.1 3rd Party Hardware

Determine if your hardware is natively supported by VeriStand. For more information, refer to the VeriStand Help topic
NI Hardware Support. If your application requires other hardware, it can be implemented in a custom device.

Note: Several hardware vendors have created custom devices for their hardware. Contact the manufacturer before
building a custom device.

1.2.2 Unsupported Measurement or Generation Mode

Determine if the required measurement or generation mode of your hardware is supported. For more information, refer
to the VeriStand Help topic Adding and Configuring Hardware Devices.

If not supported, it can be implemented in a custom device. For example, single-point hardware-timed analog acqui-
sition on NI-DAQ devices is supported in VeriStand. Continuous analog acquisition can be implemented as a custom
device.

1.2.3 Feature

Determine if VeriStand’s built-in functionality meets your needs. Most RT testing application features, such as host
interface communication, data logging, and stimulus generation, are provided.

If a required feature is not built-in, it can be implemented by extending VeriStand. For a list of ways to customize
VeriStand, refer to Using NI VeriStand with Other Software Environments to Create Real-Time Test Applications

Certain features are best implemented as custom devices. To determine when a custom device is the most appropriate
mechanism to meet a specification, you should be familiar with all the customization methods available. A general rule
is that custom devices implement features that require or use VeriStand channel data on the execution host.

For example, a TDMS File Viewer is built into the VeriStand Workspace. If you need to log VeriStand channels
to TDMS without first sending it back to the Workspace (as with high-speed streaming), a custom device called the
Embedded Data Logger fulfills this requirement.

If you need to display previous test results on the workspace while a new test is running, a custom workspace object
may be more appropriate. For more information, refer to Creating Custom Workspace Objects for VeriStand.

1.2.4 Custom Device Risk Analysis

The open nature of VeriStand is a strong advantage over other RT/HIL testing solutions. You can take advantage of
this extensibility by using custom devices written by other developers. Writing your own custom device incurs a set
of manageable risks. This section provides a list of risks that should be considered before custom device development
begins.

1.2.5 LabVIEW Application Development

Custom devices are written in LabVIEW. The framework generated by the NI VeriStand Custom Device Wizard is
single-loop or an action-engine VI. This architecture may be suitable for simple custom devices. Advanced custom
devices will require more complicated architecture.

A prerequisite for custom device development is thorough knowledge of LabVIEW programming and application ar-
chitectures. This knowledge represents NI Certified LabVIEW Developer (CLD) level expertise. You can obtain this
experience through NI’s Training and Certification program by completing the LabVIEW Core 1, Core 2, and Core 3
courses.

1.2. When do you Need a Custom Device? 9

https://www.ni.com/documentation/en/veristand/latest/manual/ni-hardware-support/
https://www.ni.com/documentation/en/veristand/latest/manual/add-configure-hardware-device/
https://www.ni.com/en-us/innovations/white-papers/09/using-ni-veristand-with-other-software-environments-to-create-re.html
https://www.ni.com/documentation/en/veristand/latest/manual/enhance-workspace-tools/
https://www.ni.com/documentation/en/veristand/latest/manual/log-target-data-embedded-data-logger/
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x4QfCAI&l=en-US
https://github.com/ni/niveristand-custom-device-wizard
https://education.ni.com/badges/resources/1255
https://www.ni.com/en-us/shop/services/education-services.html
https://www.ni.com/en-us/shop/services/education-services/customer-education-courses/labview-core-1-course-overview.html
https://www.ni.com/en-us/shop/services/education-services/customer-education-courses/labview-core-2-course-overview.html
https://www.ni.com/en-us/shop/services/education-services/customer-education-courses/labview-core-3-course-overview.html


VeriStand Custom Device Handbook, Release 1.0.0

VeriStand custom devices are typically not large LabVIEW applications. Custom devices are designed to be modular,
self-contained add-ons that add a specific functionality to VeriStand. While custom devices are typically developed by
a single programmer, large application development best-practices may still apply. For more information, refer to the
LabVIEW Help topic Best Practices for Large Application Development.

1.2.6 LabVIEW RT Application Development

Custom devices are typically designed to execute on RT systems. This allows the operator to perform deterministic
HIL and RT test procedures.

Programming for an RT system requires knowledge of real-time operating systems (RTOS) and specialized LabVIEW
development techniques. This knowledge is typically obtained through NI’s Training and Certification program by
completing the Real-Time Application Development course and refined by working on several LabVIEW RT applica-
tions.

1.2.7 VeriStand Background

Familiarity with the VeriStand Engine is crucial to successful custom device development. Selecting the appropriate
type in the Custom Device Template Tool is difficult without understanding each type. For more information, refer to
the VeriStand Help and the Understanding the VeriStand Engine topic.

Experience with VeriStand from an operator’s perspective is helpful. This experience enables you to build operator-
friendly interfaces that conform to the standard look and feel of other VeriStand components. Familiarity with VeriStand
allows the developer to build a complex system definition, which allows thorough testing and benchmarking.

1.2.8 Hardware Driver Development

The custom device must call a hardware or instrument driver to support 3rd-party hardware. All NI hardware comes
with a LabVIEW Application Program Interface (API) that can be used in the custom device. However, just because a
LabVIEW API exists does not guarantee the custom device can be easily implemented.

Consider the following points when evaluating the feasibility of a custom device for 3rd-party hardware.

1. Does an Instrument Driver exist? For more information, refer to Instrument Driver Network.

2. Is a hardware driver available?

3. Is the driver well documented?

4. Can the hardware requirement be met by passing LabVIEW double data type (DBLs) to and from the custom
device during steady state operation?

VeriStand uses channels to pass data between different parts of the system, including to and from custom devices. All
VeriStand channels are LabVIEW DBLs. For more information on LabVIEW data types, refer to the LabVIEW Help
topic Floating Point Numbers.

If the hardware driver returns a vector, structure, or any non-DBL data, that information cannot be passed directly from
the custom device to the rest of the VeriStand system. The developer is responsible for finding a way to pass data.
For more information on available communication mechanisms, refer to the LabVIEW Real-Time Module Help topic
Exploring Remote Communication Methods.

VeriStand also exposes its TCP pipe through dynamic event registration. This pipe may suite your remote communi-
cation requirements. for more information, refer to Custom Device Engine Events section.

10 Chapter 1. Introduction

https://zone.ni.com/reference/en-XX/help/371361R-01/lvdevconcepts/best_practices_large_apps/
https://www.ni.com/en-us/shop/services/education-services.html
https://www.ni.com/en-us/shop/services/products/labview-real-time-1-course.html
https://www.ni.com/documentation/en/veristand/latest/manual/vs-engine/
https://www.ni.com/en-us/support/downloads/instrument-drivers.html
https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/floating_point_numbers/
https://zone.ni.com/reference/en-XX/help/370715P-01/lvrtconcepts/exploring_communication_methods/


VeriStand Custom Device Handbook, Release 1.0.0

1.2.9 Testing

A custom device is one part of a VeriStand system. The complete state of the operator’s system is seldom known by
the custom device developer. System state includes the following information.

1. Target and host computer specifications.

2. System definition components.

3. Computational intensity of the simulation models.

4. Required loop rates.

5. System health and resource utilization.

Ideally, the custom device is implemented to be minimally burdensome, extremely efficient, and easy to use. Depending
on complexity, it may become necessary to test, debug, and optimize the code on systems representative of the operator’s
system.

Consider the following example. A custom device developer needs to benchmark a 3rd-party hardware custom device.
They add the custom device to the VeriStand Engine Demo and deploy the system definition to a quad-core PXIe-
8880 Controller. Adding the custom device to the system increased the target’s CPU load by 10% per-core and RAM
utilization by 120KB.

If the operator is deploying the same custom device to a single-core PXIe-8821 Controller, with an average CPU load
of 60% because of a computationally intense model, it’s unlikely the operator will achieve the same loop rate. Their
system may be incapable of running the custom device at all.

Time to test, debug and optimize the code must be factored into the development timeline. If you are developing for a
specific operator, test on a representative system. If you are developing for unknown systems, include the benchmarked
system specifications and timing information with the custom device documentation.

1.3 Planning the Custom Device

The most critical phase of custom device development is planning. Several VeriStand idiosyncrasies require more
thorough planning than smaller stand-alone LabVIEW applications.

As the use-cases and flexibility of a custom device increases, so does the complexity of planning and implementing the
device. The design tradeoff of this increase is a more robust device that requires less customization by the operator.

There are five areas to plan before you begin implementing.

1. Channels

2. Properties

3. Hierarchy

4. Pages

5. Device Type

In the following discussion, we will refer to a hypothetical 3rd party analog to digital (A/D) converter called the AES-
201. The device was chosen to simplify the discussion.

1.3. Planning the Custom Device 11



VeriStand Custom Device Handbook, Release 1.0.0

Note: For an actual device, refer to the VeriStand Manual topics under Creating Custom Devices.

The AES-201 has eight 32-bit analog input (AI) channels. The device can digitize on ±1V or ±500mV. The card has
a single software trigger line. Each channel has a software enable that is ON by default and a 6Hz low pass filter that is
OFF by default.

A call to the hardware API makes a single A/D conversion on the specified channel and returns raw data. The range of
the device cannot be changed after the device has been initialized.

1.3.1 Channels

Channels are used to exchange data between the custom device and the rest of the VeriStand system.

All channels are 64-bit floating point numbers. There is no built-in mechanism for other channel data types.

There are three common use cases for planning a custom device channel.

1. Data generated by the custom device after it is deployed. This data can be required by other parts of the VeriStand
system.

2. Data originating elsewhere in the VeriStand system. This data can be consumed by the custom device after it is
deployed.

3. Dynamic properties that can change after the device is deployed. These properties can be implemented in chan-
nels.

Note: Custom devices should be designed for generic use. Just because your customer does not use all channels and
settings of the hardware does not mean you should hide anything from the operator.

Given these use cases, the AES-201 custom device should have one channel each for ADDataFromCh<1..8>. The
digitized data is going to change while the device is running. The operator may need that data to be available to the
rest of the VeriStand system. For example, operators often map data from hardware to simulation model inputs.

The operator may need to map the AES-201 software trigger to another channel in System Explorer, such as a calculated
channel. The developer should create a channel for SWTrig.

The operator may need to disable a channel or toggle the input filter or the AES-201 while the device is running. The
developer should plan an additional 16 channels for FilterEnCh<1..8> and ADEnCh<1..8>.

VeriStand channels are always LabVIEW DBLs. It may be easier to flatten data to DBL than it is to implement a
background communication loop that passes native data types to the rest of the system. While the AES-201 LabVIEW
API calls for Boolean data to enable the channel or filter, you can use a DBL channel with the assumption that 0 =
False and !0 = True.

Channels are created with the Add Custom Device Channel VI. A channel is either an Input or an Output. Channel
type is determined by the custom device in the following situations.

• If the custom device passes data to the rest of the VeriStand system, it requires an output channel.

12 Chapter 1. Introduction

https://www.ni.com/documentation/en/veristand/latest/manual/create-custom-device/
https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-add-channel-waveforms/


VeriStand Custom Device Handbook, Release 1.0.0

• If the custom device receives data from the rest of the system, it requires an input channel. For example, the
AES-201 may have eight output channels (ADDataFromCh<1..8>) and 17 input channels (ADEnCh<1..8>, Fil-
terEnCh<1..8>, and SWTrig).

Once the custom device is loaded into VeriStand, the operator can map each input channel to a single data source. The
operator can map each output channel to an arbitrary number of sinks. For example, you can map ADDataFromCh1 to
several simulation model inputs. SWTrig can be mapped to a user channel or a model output, but not both.

Add Custom Device Channel VI

Use the NI VeriStand – Add Custom Device Channel VI to add a channel to the device.

The device or device subsection is specified by Parrent Ref in. If the Channel Name you specify already exists, the VI
overwrites the existing channel settings without affecting any custom properties. The VI can be called from any VI that
runs on the host computer.

Other Useful Channel VIs

There are other VIs in the NI VeriStand » Custom Device API LabVIEW palette that operate on custom device
channels.

• Configuration » Get Custom Device Channel Data VI

• Configuration » Rename Custom Device Item VI

• Configuration » Remove Custom Device Item VI

• Channel Properties » Set Custom Device Channel Default Value VI

• Channel Properties » Set Custom Device Channel Faultability VI

• Channel Properties » Set Custom Device Channel Scalability VI

• Channel Properties » Set Custom Device Channel Type VI

• Channel Properties » Set Custom Device Channel Units VI

• Driver Functions » Get Custom Device Channel List VI

In addition to these channel-specific VIs, any VI from the Item Properties palette can be used with a custom device
channel.

1.3. Planning the Custom Device 13

https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_get_custom_device_channel_data_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_rename_custom_device_item_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_remove_custom_device_item_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_custom_device_channel_default_value_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_custom_device_channel_faultability_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_custom_device_channel_scalability_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_custom_device_channel_type_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_custom_device_channel_units_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_get_custom_device_channel_list_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_item_properties_vis_pal/


VeriStand Custom Device Handbook, Release 1.0.0

1.3.2 Properties

Properties are used within the custom device to communicate state information.

Property names are case-sensitive strings. Unlike channels, property values can be any standard LabVIEW data type.

For one-time instances, you should use properties to transfer configuration and state information from the configuration
to the engine. This transfer occurs when the system definition is deployed to the target.

After the system definition deploys, the engine can still read and write properties on the execution host. However, the
engine cannot exchange properties with the host computer using the property VIs.

Because the AES-201 range cannot be changed after the card initializes, you should implement the AES-201 range
setting as a property. The configuration routine on the host computer can set the Range property of the card based on
operator input.

When the operator deploys the system definition, the engine can read the Range property. The engine can then call the
hardware API to set the range.

After the AES-201 starts, the range cannot be changed. If the operator wants to change the range setting, they will need
to use System Explorer to reconfigure the custom device and redeploy the system definition. The engine can still read
and write the Range property, but the update is not reflected in System Explorer.

You can also implement the filter setting as a property. In System Explorer, the operator can enable or disable the filter
on each channel page.

Doing so would allow the device to require eight fewer channels. However, the operator would no longer be able to
toggle the input filter while the custom device is running.

Note: To illustrate several aspects of custom device development, we will implement the filter setting as a property.

Set Item Property VI

The NI VeriStand – Set Item Property VI can be called from any VI in the custom device.

Properties can be applied to any channel or section. In addition to this VI, properties can be set when a channel or
section is created by using Property Names and Property Values.

A property must be read from the item to which it was set. For example, if you set the Filter_Enabled property on the
ADDataFromCh1 channel, you cannot read the value of the property directly from the parent section or any reference
other than ADDataFromCh1. Properties do not inherit.

Get Item Property VI

The NI VeriStand - Get Item Property VI returns the value of a specific item Property Name.

14 Chapter 1. Introduction



VeriStand Custom Device Handbook, Release 1.0.0

If the Property Name does not exist for the specified item, Value returns Default Value. Use the Found? output to
check that the intended property name was found on the item.

Remove Item Property VI

The NI VeriStand – Remove Item Property VI removes the property name from an item.

The Get Item Property and Remove Item Property VIs may be called from any VI in the custom device.

Other Useful Property VIs

There are other VIs in the NI VeriStand » Custom Device API LabVIEW palette that operate on custom device
properties.

• Item Properties » Get Item Description

• Item Properties » Get Item GUID

• Item Properties » Get Property Names List

• Item Properties » Set Item Description

• Item Properties » Set Item GUID

• Device Properties » Get Custom Device Decimation

• Device Properties » Get Custom Device Driver

• Device Properties » Get Custom Device Version

• Device Properties » Set Custom Device Decimation

• Device Properties » Set Custom Device Driver

• Device Properties » Set Custom Device Version

• Device Properties » Specify Custom Device Execution Mode

1.3.3 Custom Device Decimation

You can set the decimation for any type of custom device. However, decimation is handled differently for inline and
asynchronous custom devices.

• An inline custom device is called when indicated by its decimation. For example, decimating an inline custom
device by 4 causes the Primary Control Loop (PCL) to call the custom device on every fourth iteration. Note:
The device must execute in a short enough time for the entire PCL to complete its iteration in addition to device
execute time.

• Asynchronous devices have their channel FIFOs read on the Nth iteration of the PCL. N is the decimation rate
of the asynchronous device.

1.3. Planning the Custom Device 15

https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_get_item_description_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_get_item_guid_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_get_property_names_list_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_item_description_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_item_guid_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_get_custom_device_decimation_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_get_custom_device_driver_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_get_custom_device_version_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_custom_device_decimation_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_custom_device_drivers/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_custom_device_version_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_specify_custom_device_execution_mode_vi/


VeriStand Custom Device Handbook, Release 1.0.0

1.3.4 Hierarchy

VeriStand allows each custom device to be presented as a hierarchy in System Explorer. A hierarchy allows developers
to organize and present a custom device to the operator.

Within a Custom Device hierarchy, there are sections and channels. All items in a custom device configuration tree are
either channels or sections. Sections provide a way to group items in a hierarchy.

The following rules apply to channels and sections.

1. You cannot create additional levels of a custom device hierarchy from channels.

2. You cannot map sections to other items in VeriStand.

3. You cannot use sections to exchange data during run-time.

Use the NI VeriStand - Add Custom Device Section VI to create sections.

The default section glyph (icon) is a folder. You can change the glyph by modifying the custom device XML. A
collection of glyphs that install with VeriStand is found in <Application Data>\System Explorer\Glyphs.

Add Custom Device Section VI

The NI VeriStand – Add Custom Device Section VI adds a section with the Section Name to the device specified by
Parent Ref in.

If the name you specify already exists for that device, this VI updates only the GUID of that section without affecting
any properties or child items.

This VI can be called from any VI that runs on the host computer. You build-up the custom device hierarchy by using
the Parent Ref out and Section Ptr outputs.

Parent Reference is the level of the hierarchy that will contain the new section. Section Pointer is the reference to the
new section, one level deeper in the hierarchy than the Parent Reference.

Hierarchy Examples

You should plan a custom device to use the minimum number of sections necessary to make the hierarchy well-
organized, intuitive, and user friendly.

There are two types of hierarchies.

1. Flat

2. Nested

We will examine these hierarchy types in relation to AES-201 and discuss the advantages and disadvantages of each.

16 Chapter 1. Introduction

https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_add_custom_device_section_vi/


VeriStand Custom Device Handbook, Release 1.0.0

Flat Hierarchy

The following is an example of a flat, or single-level, hierarchy for the AES-201.

In this example, all of the channels are under the main section in the configuration tree. While it is easy for the operator
to determine how many channels are available, the type of channel is unknown. Also, the channel function is only
implied by the name.

A flat hierarchy is best suited for devices with a small number of channels that all perform the same function. The
hierarchy is less useful for devices with many channels, or when channels perform different functions. For example, a
custom device for a multifunction data acquisition board would be difficult to present in a flat hierarchy.

Notice that the same Device Item Ref in is used to create the SWTrig, ADEnCh<1..8>, and ADDataFromCh<1..8>
channels. As a result, all of these channels appear at the same level of the hierarchy.

In the code, you should be able to identify the input and output channels. SWTrig and ADEnCh<1..8> are input channels
because the custom device sinks data from them. ADDataFromCh<1..8> are output channels because they source data
to the rest of VeriStand.

From an operator perspective, custom device inputs and outputs may seem backwards. Hardware inputs correspond to
custom device outputs. The operator is not required to interact with the custom device source code. They will work in
System Explorer. However, the channel direction should still make sense.

1.3. Planning the Custom Device 17



VeriStand Custom Device Handbook, Release 1.0.0

Nested Hierarchy

The following is an example of a nested hierarchy for the AES-201.

The channels have been organized into Hardware Enables and Hardware Inputs sections. This device is well-organized
and fairly intuitive.

The Section Ptr outputs are used to create channels beneath the corresponding section in the initialization VI. The
parent reference is also used to create the trigger channel at the same level as the two sections in the custom device
hierarchy.

1.3.5 Pages

Pages are VIs that System Explorer displays in the configuration pane subpanel.

Subpanels are LabVIEW front pane containers that allow a VI to display the front panel of another VI. For more
information, refer to the LabVIEW Help topic Container Controls and Indicators.

When you click an item in the configuration tree, a page displays in the Subpanel. Pages run on the host computer.
They define the appearance and configuration experience of the custom device.

The niveristand-custom-device-wizard creates two configuration VIs by default.

1. Initialization VI - A simple VI that does not populate in the Subpanel.

2. Main VI - A page.

When you click on the top-most custom device item in the configuration tree, the <Custom Device Name> Main Page
VI goes into the configuration pane and executes the block diagram.

18 Chapter 1. Introduction

https://zone.ni.com/reference/en-XX/help/371361R-01/lvconcepts/container_controls_and_indicators
https://github.com/ni/niveristand-custom-device-wizard/releases


VeriStand Custom Device Handbook, Release 1.0.0

If the developer did not assign a custom page to a new section or channel, the default section or channel page is shown
when the operator clicks on the item in the configuration tree.

1.3. Planning the Custom Device 19



VeriStand Custom Device Handbook, Release 1.0.0

The default pages allow the operator to set a description for the section or page. VeriStand retains this data in the
System Definition (.nivssdf ) file.

You cannot individually modify the block diagram or font panel of default pages. The niveristand-custom-device-wizard
allows the developer to specify extra pages. Extra pages can be used to override the default page for an item.

When the developer creates an extra page and associates it with a section or channel, item’s default page is overridden.
You can individually modify the front panel and block diagram of extra pages. The block diagram executes when the
operator clicks on the item in the configuration tree.

There are two rules for modifying custom device pages.

1. Do not change the front panel size. The front panel is loaded into a subpanel in the configuration pane. Changing
the size may make the front panel unusable.

2. Do not change the names or connector pane associations of any terminal generated by the page template or
niveristand-custom-device-wizard. VeriStand uses these objects to interface with the page. Changing these
items may make the custom device unusable.

20 Chapter 1. Introduction



VeriStand Custom Device Handbook, Release 1.0.0

1.3.6 Extra Pages

Extra pages override default pages and allow you to customize the appearance and behavior of any item in the custom
device hierarchy.

You should plan an extra page for each item in the custom device you want to customize differently. For example,
to customize the page for each ADDataFromCh channel, you will need multiple extra pages. To customize all AD-
DataFromCh channels the same way, you will only need one extra page.

Note: VeriStand stores state data for each individual item in the custom device hierarchy in the system definition file.

The AES-201 may need five extra pages.

• A page for each section.

• A page for ADDataFromCh<1..8> channels.

• A page for ADEnCh<1..8> channels.

• A page for the SWTrig channel.

• A page for unforeseen needs.

You may not need all of these extra pages. It is better to have extra pages now rather than need more later.

VeriStand requires four items to override a default page with an extra page.

1. Page

2. Globally Unique IDentifier (GUID)

3. XML Declaration

4. Build Specification

Page

A properly formed page VI must exist.

If you plan properly, you will be able to specify all the extra pages when you run the niveristand-custom-device-wizard.
An extra page is created for each element in the Custom Device Extra Page Names control.

1.3. Planning the Custom Device 21



VeriStand Custom Device Handbook, Release 1.0.0

The niveristand-custom-device-wizard generates the page, GUID, and XML Declaration. The wizard then includes the
page in the build specification. You will find the extra page template in the Page Template.vit. This file is located at
Custom Device API.lvlib\Templates\Subpanel Page VI.

If you do not use the wizard to create extra pages, you must manually add and configure them. Manually adding extra
pages to a custom device after running the wizard is difficult. Avoid this issue by creating a few extra pages beyond
what you think is necessary.

Note: Unused extra pages are not executed, but they do consume marginal space on disk.

GUID

When you associate an extra page with a channel or section, you override the default page for that item.

This can be do done in two ways.

1. Specify the GUID when the item is created.

2. Set the item’s GUID with the NI VeriStand - Set Item GUID VI. You can access this VI in LabVIEW by navigating
to NI VeriStand » Custom Device API » Configuration VIs » Item Properties.

22 Chapter 1. Introduction

https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_item_guid_vi/


VeriStand Custom Device Handbook, Release 1.0.0

The niveristand-custom-device-wizard generates a GUID for each extra page in the Custom Device Extra Page Names
control.

XML Declaration

The custom device API associates a channel or section with a GUID while the custom device XML associates the
GUID with the page VI.

The page and its GUID must be declared in the custom device XML <Pages> section within a <Page> schema.

If the developer planned for the extra pages before running the niveristand-custom-device-wizard, the tool makes the
appropriate entries in the custom device XML file for each extra page.

Build Specification

Extra pages are dynamically called VIs. Since they are not a part of the custom device VI hierarchy, they must be
explicitly included in the Build Specification.

If the developer planned for the required extra pages before running the niveristand-custom-device-wizard, the wizard
configures the build specifications to include the extra pages into the initialization library.

If a page must be added to the custom device after the tool runs, you must edit the configuration Build Specification to
include the extra page. You must also include any dynamically called dependencies.

1.4 Custom Device Types

The custom device type refers to its execution mode. The mode defines how the device interacts with the VeriStand
Engine.

The VeriStand Engine is the non-visible mechanism that controls system timing and communication between the Target
and Host Computer. While deployed to the Target, all custom devices run inside the engine.

The niveristand-custom-device-wizard generates a new LabVIEW Project containing one of five device frameworks.
The framework is determined by the Custom Device Execution Mode.

1.4. Custom Device Types 23

https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-types/
https://www.ni.com/documentation/en/veristand/latest/manual/vs-engine/
https://www.ni.com/documentation/en/veristand/latest/manual/vs-engine/
https://github.com/ni/niveristand-custom-device-wizard/releases
https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-types/


VeriStand Custom Device Handbook, Release 1.0.0

The selected mode determines when the device will run with respect to the other operations performed by the VeriStand
Engine. There are five device frameworks available. Three of the frameworks are for custom devices, and the other
two are for custom timing and synchronization devices.

Custom timing and synchronization devices are the same as regular custom devices, but they can be configured as the
hardware synchronization master to drive RTSI0. For more information, refer to Real-Time System Integration (RTSI)
and Configuration Explained.

Custom timing and synchronization devices are not covered in detail in this document. For more information about
custom timing and synchronization devices, refer to the VeriStand Help topic Adding and Configuring Timing and Sync
Devices. Multi- chassis synchronization may also be accomplished using built-in features. For more information, refer
to Creating a Distributed System With NI VeriStand.

Two of the regular custom devices run in-line with the Primary Control Loop (PCL), the other runs in parallel with the
PCL. A custom device is not limited to using just one type of framework. Some developers have built both in-line and
parallel engines for a single custom device and allow the operator to select which mode to deploy.

Depending on your needs, you can alter the code within the framework. However, you must maintain the connector pane,
controls, and indicators provided by the niveristand-custom-device-wizard. VeriStand uses these objects to interface
with the custom device. If they are changed, the custom device will experience errors.

24 Chapter 1. Introduction

https://www.ni.com/en-us/support/documentation/supplemental/18/real-time-system-integration--rtsi--and-configuration-explained.html
https://www.ni.com/en-us/support/documentation/supplemental/18/real-time-system-integration--rtsi--and-configuration-explained.html
https://www.ni.com/documentation/en/veristand/latest/manual/add-configure-timing-sync/
https://www.ni.com/documentation/en/veristand/latest/manual/add-configure-timing-sync/
https://www.ni.com/en-us/innovations/white-papers/10/creating-a-distributed-system-with-ni-veristand.html


VeriStand Custom Device Handbook, Release 1.0.0

1.4.1 Asynchronous

The asynchronous custom device framework provides a simple, single-loop architecture. There are sections for initial-
ization and cleanup before and after the loop.

Note: The asynchronous template provides a While Loop that can be exchanged for a Timed Loop.

The loop runs in parallel to the PCL. If proper real-time development practices are adhered to, it is unlikely to block or
slow the PCL. The rest of the VeriStand system will continue to execute as expected even if the asynchronous custom
device is latent or stalls.

The loop can be synchronized to the PCL’s timing source, making it pseudo-synchronous. This applies to asynchronous
devices that use a Timed Loop. While Loops cannot be used for this purpose.

The benefit of an asynchronous custom device synchronized to the PCL is that it will not cause the PCL to be late if
the device is late. VeriStand ticks the device clock for all Timed Loops that have Use Device Clock set to true.

The asynchronous device can run at a different rate than the PCL. You can define the rate using any execution timing
method available in LabVIEW. The rate can iterate faster than the PCL or be a decimation of the PCL rate specified
using the NI VeriStand - Set Custom Device Decimation VI. This VI can be found in LabVIEW by navigating to NI
VeriStand » Custom Device API » Configuration » Item Properties » Device Properties.

The asynchronous template uses RT FIFOs, specifically Device Inputs FIFO and Device Outputs FIFO, to exchange
channel data with the rest of VeriStand. Since the asynchronous device runs in parallel to the PCL and passes channel
data through RT FIFOs, there is a minimum of one cycle delay from when data travels back and forth from the PCL to
the custom device. These FIFOs correspond to those in the VeriStand Engine.

The asynchronous device is not guaranteed to execute at the same time as other components of the system. For example,
the first iteration may execute before the PCL processes alarms.

The input controls are specially named controls that the system will use to provide the device loop with data. The
controls are not required for the device loop to run. For example, if the device doesn’t produce any output data, then
you don’t need the Device Outputs FIFO control. If you do need these controls, they must have these exact names to
be functional.

The optional notifier status element is used to notify the engine of the last state of the custom device and to indicate the
device has completed execution. If this control is not used, a default No Error value is returned to the system when the
device finishes execution. This error state is not checked until the system shuts down. Use an output channel to send
more immediate status values to the system.

The asynchronous framework includes VIs from the VeriStand Asynchronous Device Properties VIs subpalette.

1.4. Custom Device Types 25

https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-asynchronous-driver-template/
https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-sync-asynchronous/
https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-api-library/
https://www.ni.com/documentation/en/veristand/latest/manual/vs-engine/


VeriStand Custom Device Handbook, Release 1.0.0

1.4.2 Inline Hardware Interface

The inline hardware interface template is similar to a state machine architecture.

Note: Some developers will recognize it as an action-engine. For a discussion on action engines, refer to the NI
Discussion Forums post Community Nugget 4/08/2007 Action Engines.

The PCL specifies the case to execute. An uninitialized Feedback Node is used for iterative data transfer.

There are five cases defined by the Operation enumerated control.

1. Initialize

2. Start

3. Read Data from Hardware

4. Write Data to Hardware

5. Close

This custom device runs in-line with the PCL, which calls each case at a specific time with respect to the other com-
ponents in the VeriStand Engine. The PCL will not proceed until the custom device case has completed.

Initialize Case

The Initialize case executes before the PCL starts. Inside the case, you can use a device reference to extract configuration
information from device properties. Initialize data and buffers are used internally in the device.

The framework compiles the list of data references for the custom device Inputs and Outputs. This is done in advance
using VeriStand Data References VIs, specifically the NI VeriStand - Get Channel Data Reference VI.

Note: Because the PCL has not started, channel values cannot be read or written in the Initialize case.

26 Chapter 1. Introduction

https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-inline-hardware-interface-template/
https://forums.ni.com/t5/LabVIEW/Community-Nugget-4-08-2007-Action-Engines/m-p/503801?profile.language=en&requireLogin=False
https://zone.ni.com/reference/en-XX/help/371361R-01/lvconcepts/block_diagram_feedback/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_data_references_pal/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_get_channel_data_reference/


VeriStand Custom Device Handbook, Release 1.0.0

Start Case

The Start case executes after initialization but before the PCL runs. There is no difference between what code you can
place in the Initialize and Start states.

Note: Because the PCL has not started, channel values cannot be read or written in the Start case.

Read Data from HW Case

The Read Data from HW case executes at the beginning of the PCL, before other components, such as alarms, and
procedures, execute.

After processing system mappings, the data obtained in this case is available to the other components of the system for
the remainder of the PCL iteration. For a detailed timing diagram, refer to Outline of PCL Iteration.

The template contains a Flat Sequence frame named Read Hardware Channels. You can replace the code inside the
frame with the API calls necessary to obtain data from a hardware API.

1.4. Custom Device Types 27

https://niveristand-custom-device-handbook.readthedocs.io/en/latest/Custom_Device_Types.html#outline-of-pcl-iteration


VeriStand Custom Device Handbook, Release 1.0.0

Write Data to HW Case

The Write Data to HW case executes at the end of the PCL, after the other components have executed.

The case contains a Flat Sequence frame named Write Input Data to Hardware Channels. You can replace the code
inside the frame with the API calls necessary to send data to a hardware device.

Close Case

The Close case executes after the PCL has finished executing. You should close references and release resources in this
state.

Note: Because the PCL has terminated, channel values cannot be read or written in the Close case.

1.4.3 Inline-Async Hardware Interface

You can generate an inline-async custom device template from the niveristand-custom-device-wizard. When creating
a project, set the execution mode to Inline HW Interface and enable Use Inline-Async API.

28 Chapter 1. Introduction



VeriStand Custom Device Handbook, Release 1.0.0

By using the Inline-Async-API, the inline-async template framework can perform the following actions.

• Initializing asynchronous VIs.

• Launching asynchronous VIs.

• Cleaning up asynchronous VIs.

• Handling and reporting errors.

• Transferring data between inline and asynchronous VIs.

The RT Driver VI of an inline custom device can communicate channel data with VeriStand. While doing so, the VI
can also launch an asynchronous loop(s) to handle nondeterministic operations.

One example of a nondeterministic operation is log file data writing. The RT Driver VI of the inline custom device
communicates with the asynchronous loop(s) using RT FIFOs.

Note: While the RT Driver VI is using RT FIFOs, data may be lost if elements are not read at a fast enough rate.

1.4. Custom Device Types 29

https://github.com/ni/niveristand-custom-device-development-tools/tree/main/inline-async-api


VeriStand Custom Device Handbook, Release 1.0.0

1.4.4 Inline Model Interface

The Inline Model Interface custom device template also has a state machine/action engine architecture. The template
uses an uninitialized Feedback Node for iterative data transfer.

There are four cases defined by the Operation enumerated control.

1. Initialize – Same configuration as the Inline HW Interface.

2. Start – Same configuration as the Inline HW Interface.

3. Execute Model

4. Close – Same configuration as the Inline HW Interface.

This custom device is run in-line with the PCL. The device calls each case at a specific time with respect to the other
components in the system. The PCL will not proceed until the custom device case has completed.

Execute Model Case

The Execute Model case is called and runs in the middle of the PCL.

This state takes the following steps.

1. Reads input data.

2. Performs a calculation.

3. Writes output data to VeriStand.

Using the Inline Model Interface mode enables you to process data acquired from hardware inputs and send the pro-
cessed values to hardware outputs with no latency.

30 Chapter 1. Introduction



VeriStand Custom Device Handbook, Release 1.0.0

1.4.5 Inline Timing and Sync

The inline timing and sync custom device is similar to the inline hardware interface custom device. The major difference
between the two custom device types is that the inline timing and sync custom device can also function as a hardware
synchronization master device to drive the RTSI 0 line.

1.4.6 Asynchronous Timing and Sync

The asynchronous timing and sync custom device is similar to the asynchronous custom device. The major difference
between the two custom device types is that the asynchronous timing and sync custom device can also function as a
hardware synchronization master device to drive the RTSI 0 line.

1.4.7 Outline of PCL Iteration

The order of operations in the Primary Control Loop varies with respect to the execution mode of the controller.

Note: You can adjust the settings in System Explorer by navigating to Targets » Controller » Other Settings »
Execution Mode.

The Data Processing Loop is responsible for executing procedures, alarms, and calculated channels. For more informa-
tion on hardware timing in VeriStand, refer to the KnowledgeBase topic Hardware I/O Latency Times in NI VeriStand.

The following diagram displays the operation of the VeriStand Engine.

1.4. Custom Device Types 31

https://niveristand-custom-device-handbook.readthedocs.io/en/latest/Custom_Device_Types.html#inline-hardware-interface
https://niveristand-custom-device-handbook.readthedocs.io/en/latest/Custom_Device_Types.html#asynchronous
https://www.ni.com/documentation/en/veristand/latest/manual/vs-engine/
https://www.ni.com/documentation/en/veristand/latest/manual/environment/
https://www.ni.com/documentation/en/veristand/latest/manual/vs-engine/
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000kKVGSA2&l=en-US


VeriStand Custom Device Handbook, Release 1.0.0

Parallel Mode

In Parallel mode, the PCL initiates execution of models and continues to its next iteration without waiting for models
to finish executing. This causes a one-cycle delay between when a model executes and when the data it produces is
available to the system.

The following are the steps that the PCL takes while in parallel mode.

1. Gets inputs from hardware devices in the system definition. Note: If the system includes an inline hardware
interface custom device, the PCL reads DAQ digital lines and counters after the Read Data from HW case of the
custom device executes in step 3.

2. Reads asynchronous custom device FIFOs from the previous iteration.

3. Runs the Read Data From HW case of inline hardware interface custom devices. Note: If you configured
hardware scaling, VeriStand applies the scaling after acquiring all hardware inputs.

4. Reads previous iteration data from models in the system definition. Note: This step executes on the second and
subsequent iterations.

5. Reads data from the previous iteration of the Data Processing Loop.

6. Processes system mappings. Note: VeriStand components and custom devices cannot read data from a previous
step until the PCL processes system mappings. This is true even if the previous step acquired the data the
component needs.

7. Runs the Execute Model case of inline model interface custom devices.

32 Chapter 1. Introduction



VeriStand Custom Device Handbook, Release 1.0.0

8. Executes steps of running real-time sequences. Notes:

• VeriStand executes real-time sequences after input operations but before output operations. VeriStand con-
tinues to run every step of the real-time sequence until the sequence is complete, reaches a Yield step, or
completes an iteration of a loop with Auto Yield set to TRUE. If a sequence takes longer than the given time
for an iteration of the PCL, the PCL runs late.

• To avoid errors, break up the timing of the steps by placing Yield steps throughout the sequence and enabling
the Auto Yield property for any loops in the sequence.

9. Processes system mappings.

10. Writes data to models.

11. Initiates asynchronous execution of models.

12. Writes data to the Data Processing Loop.

13. Writes output data to hardware devices.

14. (Optional) For inline hardware interface custom devices, runs the Write Data to HW case.

15. Writes data to asynchronous custom device FIFOs.

Low Latency Mode

In Low Latency mode, the PCL waits for the Model Execution Loop(s) to finish writing data to models before it reads
and publishes model values to the system. This occurs during every iteration of the system.

When the model completes execution, the PCL provides data from the model to other loops during the same iteration
that the model generated the data.

The following are the steps that the PCL takes while in low latency mode.

1. Gets inputs from hardware devices in the system definition. Note: If the system includes an inline hardware
interface custom device, the PCL reads DAQ digital lines and counters after the Read Data from HW case of the
custom device executes in step 3.

2. Reads asynchronous custom device FIFOs from the previous iteration.

3. Runs the Read Data from HW case of inline hardware interface custom devices. Note: If you configured
hardware scaling, VeriStand applies the scaling after acquiring all hardware inputs.

4. Reads data from the previous iteration of the Data Processing Loop.

5. Processes system mappings. Note: VeriStand components (including custom devices) cannot read data from a
previous step until the PCL processes system mappings, even if the previous step acquired the data the component
needs.

6. Runs the Execute Model case of inline model interface custom devices.

7. Executes steps of running real-time sequences. Notes:

• VeriStand executes real-time sequences after input operations but before output operations. VeriStand con-
tinues to run every step of the real-time sequence until the sequence is complete, reaches a Yield step, or
completes an iteration of a loop with Auto Yield set to TRUE. If a sequence takes longer than the given time
for an iteration of the PCL, the PCL runs late.

• To avoid errors, break up the timing of the steps by placing Yield steps throughout the sequence and enabling
the Auto Yield property for any loops in the sequence.

8. Processes system mappings.

9. Writes data to models.

1.4. Custom Device Types 33



VeriStand Custom Device Handbook, Release 1.0.0

10. Initiates execution of models and waits for them to complete execution.

11. Reads data from models.

12. Processes system mappings.

13. Writes data to the Data Processing Loop.

14. Writes output data to hardware devices.

15. (Optional) For inline hardware interface custom devices, runs the Write Data to HW case.

16. Writes data to asynchronous custom device FIFOs.

34 Chapter 1. Introduction



CHAPTER

TWO

IMPLEMENT THE CUSTOM DEVICE

2.1 Implementing a Custom Device

We will now walk through the implementation of a hypothetical third-party custom device for the AES-201. This
example will focus on the custom device process. For more information on implementing a custom device, refer to
Implementing a Custom Device.

The specifications of this custom device are displayed in the following image.

2.1.1 Determine Custom Device Feasibility

Before we begin, let us consider the customer needs, analyze any risks, and create specifications for the custom device.

Customer Needs

Our customer requires 32-bits of resolution for their real-time (RT) test system. This is the only PXI digitizer that
fulfills their requirements. After checking with NI.com and the manufacturer, we did not find an existing AES-201
custom device. We determine that a new custom device is necessary.

35

https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-implement/


VeriStand Custom Device Handbook, Release 1.0.0

Risk Analysis

The AES-201 ships with a hardware driver that’s compatible with LabVIEW Real-Time and a LabVIEW API. We have
a real-time desktop target that is identical to our customer’s platform. At our request, the customer has provided their
model DLL. This will allow us to test and benchmark on a similar structure to our customer’s system.

Development Specifications

Based on the AES-201, we create the following specifications.

• Have eight output channels: ADDataFromCh<1..8>.

• Have nine input channels: ADEnCh<1..8>, SWTrig.

• Have nine properties: FilterEn<1..8> and Range.

• Use a nested two-level hierarchy.

• Override the default channel page for ADDataFromCh<1..8>.

• Use the default page for everything else. Note: We only need one extra page, but we will create several just in
case requirements change.

• Use the Hardware Inline custom device to avoid FIFO latency.

2.1.2 Build the Template Project

We will begin by building a template project.

1. Open the niveristand-custom-device-wizard from LabVIEW by navigating to Create Project » NI VeriStand »
CONSOLIDATED NI VeriStand Custom Device.

2. Enter the Custom Device Name. This will serve as the sub folder name.

3. Select the Custom Device Execution Mode.

4. Select the Project Root. The wizard creates the new LabVIEW Project in a sub folder inside the project root.
We do not need to specify a sub folder for the device because the wizard creates one.

5. Click Finish.

The following image displays a configured wizard that will generate a LabVIEW Project for the AES-201 custom
device.

36 Chapter 2. Implement the Custom Device

https://github.com/ni/niveristand-custom-device-wizard/releases


VeriStand Custom Device Handbook, Release 1.0.0

2.1.3 Build the Configuration

We will now modify the LabVIEW Project VIs generated by the niveristand-custom-device-wizard.

Edit the Initialization VI

We will start by opening the Initialization VI. Locate the VI by navigating to AES-201 System Explorer.lvlib » Sys-
tem Explorer » Dynamically Called. In the initialization VI, we will build-up the default channel list. For more
information, refer to Add Custom Device Channels and Waveforms.

2.1. Implementing a Custom Device 37

https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-add-channel-waveforms/


VeriStand Custom Device Handbook, Release 1.0.0

Add a Boolean property to each channel. This property will indicate the state of the filter on the channel. For more
information, refer to Adding Custom Device Item Properties.

Replace the string constant with a global variable that has the same default value as the constant. Use the global variable
Constants.vi by navigating to <Custom Device Name> Shared.lvlib » Shared.

Note: You should use global variables or enum type definitions for any constants that will be reused throughout the
custom device.

38 Chapter 2. Implement the Custom Device

https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-add-item-properties/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvconcepts/glob_variables/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/creating_type_defs/


VeriStand Custom Device Handbook, Release 1.0.0

Override the Default Page

We want to override the default channel page to add a control that allows the operator to set the filter. We created an
extra page called ADDataFromCh.vi for this purpose.

Open the custom device XML to find the GUID associated with the extra page. You should update the glyph of the
channel page to default fpga channel. Operators are used to having channels associated with this glyph.

Note: You can also change the glyph of the main page to daq device.

2.1. Implementing a Custom Device 39



VeriStand Custom Device Handbook, Release 1.0.0

Add the GUID to the global variable and wire the global into the GUID terminal of Add Custom Device Channel. This
will associate the channel with the VI.

40 Chapter 2. Implement the Custom Device

https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_add_custom_device_channel_vi/


VeriStand Custom Device Handbook, Release 1.0.0

When the operator clicks on ADDataFromCh<1..8> in the configuration tree, ADDataFromCh.vi runs as a sub panel
in System Explorer instead of the default channel page.

From here-on, we will set properties when we create the item rather than using the Set Item Property VI to set them on
the item reference.

Edit the Extra Page

Now that we have linked the channels to the extra page, we will make edits to the extra page, ADDataFromCh.vi. In
the Initialization frame, we will add code to display the channel information.

Operators are used to seeing channel data when they click on a channel. If the device is a channel, we will send the
channel data to an indicator on the front panel.

2.1. Implementing a Custom Device 41

https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_set_item_property_vi/


VeriStand Custom Device Handbook, Release 1.0.0

You should use the Boolean outputs from functions in the API to make sure that you are operating on a valid reference.
In this case, we will only retrieve the channel data if we have a valid channel reference.

Another option is to specify the default property value. The default property value is returned if the property is not
found. Using the default property value does not set the property.

The initialization frame will read the name and description from the device reference. Do the same thing for the FilterEn
property so the operator can see the state of the channel’s filter setting.

VeriStand is responsible for passing the correct channel reference to the custom device and storing state data for all the
controls and indicators. The developer is responsible for acting on the reference and displaying the state.

42 Chapter 2. Implement the Custom Device



VeriStand Custom Device Handbook, Release 1.0.0

Add a Boolean control to the front panel called Channel Filter. Create a case in the Event Structure for the control’s
value change. If the FilterEn property is found, set the property according to the value of the control. If the FilterEn
property is not found, show a dialog box with debugging information.

2.1. Implementing a Custom Device 43



VeriStand Custom Device Handbook, Release 1.0.0

If the operator does not change this control, the property is never created. To rectify this, you can initialize the property
in the Initialization VI or you can assume a default value when you read the property.

Remember, this VI runs on the host computer. We can launch a pop-up dialog box to assist with debugging.

Now we will build a subVI that creates channels so we can reuse it for the enabled channels.

Add the default channel GUID to the Constants.vi. You can get the GUID from the front panel of Add Custom Device
Channel.

44 Chapter 2. Implement the Custom Device

https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_add_custom_device_channel_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_add_custom_device_channel_vi/


VeriStand Custom Device Handbook, Release 1.0.0

For reference, the GUID is 03D3BB99-1485-13A6-561D1F898F032919.

If the Override Default Channel? terminal of our subVI is true, the VI takes a GUID from the caller. If not, the VI
uses the default channel GUID.

The properties are set from the Add Custom Device Channel VI directly. You can use this subVI in many custom
device projects.

2.1. Implementing a Custom Device 45

https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_add_custom_device_channel_vi/


VeriStand Custom Device Handbook, Release 1.0.0

Allow Simultaneous Calls to the Same Extra Page

Custom devices execute as reentrant on the target. This enables the operator to run multiple independent instances of
the same custom device. This would be useful if the operator has several AES-201 cards.

To preserve this capability, enable Preallocated clone reentrant execution from the subVI by navigating to File » VI
Properties » Execution. For more information, refer to the LabVIEW Help topic Reentrancy: Allowing Simultane-
ous Calls to the Same SubVI.

Final Initialization VI

The final Initialization VI creates two sections.

1. Hardware Inputs, with eight output channels.

2. Hardware Enables, with eight input channels. Note: We will also create an input channel for the software trigger.

Configure the Main Page

Now that the initialization routine is complete, we should configure the main page. We will use a type definition combo
box to set the range of the AES-201. Add the type definition to the AES-201 System Explorer.lvlib.

46 Chapter 2. Implement the Custom Device

https://zone.ni.com/reference/en-XX/help/371361R-01/lvdialog/vi_properties_dialog_box/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvdialog/vi_properties_dialog_box/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvdialog/execution/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvconcepts/reentrancy/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvconcepts/reentrancy/


VeriStand Custom Device Handbook, Release 1.0.0

Modify the main page so the operator can set the range of the device.

Note: You do not have to override the main page with a custom page. You can modify the main page directly.

2.1. Implementing a Custom Device 47



VeriStand Custom Device Handbook, Release 1.0.0

Add another string to the global variable for the range property.

Add an event case to the main page that sets the range property when the operator changes the value of the control.

The engine will need to know how to address the board. Add another control so the operator can configure the Resource
Number.

48 Chapter 2. Implement the Custom Device



VeriStand Custom Device Handbook, Release 1.0.0

Add the Resource Number as an event case to set the resource number property.

2.1. Implementing a Custom Device 49



VeriStand Custom Device Handbook, Release 1.0.0

Read the device’s resource name and range into the corresponding controls in the initialization frame similarly to the
extra channel page’s filter property.

Build the Final Configuration

Build the custom device and inspect the hierarchy, sections, channels, main page, and extra pages.

50 Chapter 2. Implement the Custom Device



VeriStand Custom Device Handbook, Release 1.0.0

2.1.4 Build the Driver

The AES-201 comes with a simple LabVIEW API. We will use the API to build the RT driver portion of the custom
device.

Functions in the API call into the hardware DLL. This is typical of a LabVIEW API. This paradigm requires the
developer to post the DLL to the execution host.

Modify the custom device to package the DLL with the custom device and deploy it to the execution host.

2.1. Implementing a Custom Device 51



VeriStand Custom Device Handbook, Release 1.0.0

2.1.5 Add Custom Device Dependencies

Shared libraries are typically .dll files on Windows operating systems and .so files on Linux systems. If you’re building
a custom device for a PXI target, you will be working with .so files.

There are two parts to packaging dependencies. First, you need to incorporate the dependency into the LabVIEW
Project.

Add the DLL to the custom device LabVIEW library.

Modify the configuration’s Source Distribution by adding the DLL to the Always Included list.

Be sure to note the location of the support directory. In this case it’s C:\Documents and Settings\All Users\
Documents\National Instruments\NI VeriStand 2018\Custom Devices\AES- 201\Data.

Set the destination directory for the DLL to the support directory.

52 Chapter 2. Implement the Custom Device

https://zone.ni.com/reference/en-XX/help/371361R-01/lvdialog/source_distrib_db/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvdialog/source_file_distrib_page/


VeriStand Custom Device Handbook, Release 1.0.0

When you build the configuration, LabVIEW sends the DLL to the support directory.

The second part to packaging dependencies is in incorporating the dependency into the custom device. Use the Add
Custom Device Dependencies VI to deploy the library to the execution host.

There are several other VIs in the VeriStand Dependencies VIs palette that operate on custom device dependencies.
They can be found by navigating to the following locations.

• Dependencies VIs » Get Custom Device Dependencies

• Dependencies VIs » Reset Custom Device Dependencies

Add the custom device dependency to the Initialization VI.

2.1. Implementing a Custom Device 53

https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_add_custom_device_dependencies_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_add_custom_device_dependencies_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_get_custom_device_dependencies_vi/
https://zone.ni.com/reference/en-XX/help/372846M-01/veristandmerge/vs_reset_custom_device_dependencies_vi/


VeriStand Custom Device Handbook, Release 1.0.0

As a result, the Initialization VI adds the DLL to the project dependency list while running.

54 Chapter 2. Implement the Custom Device



VeriStand Custom Device Handbook, Release 1.0.0

You must direct the engine to the .so file on the target. Use either of the following methods.

• Deploy the .so file to a folder in RT’s search path. By default, the path is C:\ni-rt\system.

• (Recommended) Use a global variable that points to the absolute path of the DLL on the target.

For ease of maintenance, deploy the .so file to C:\ni-rt\VeriStand\Custom Devices\<Custom Device Name>\
<library>.so.

Read the range and resource number properties from the custom device reference. Recall that you must read the property
from the correct item and that we set these properties to the top-level device reference.

Call the AES-201 API to initialize the board according to the property values.

If the operator didn’t trigger the event to set the property, there won’t be a property to read. Instead of throwing an
error, default to the value of your choice and call the API accordingly.

2.1. Implementing a Custom Device 55



VeriStand Custom Device Handbook, Release 1.0.0

Note: You should print a few strings to the console to tell the operator what is happening.

The inline HW custom device uses a feedback node to pass state data between states. Add the AES-201 state data to
the feedback node’s cluster.

This LabVIEW object represents all the state data needed to use the AES-201 in subsequent states.

56 Chapter 2. Implement the Custom Device



VeriStand Custom Device Handbook, Release 1.0.0

Add the input and output channel references to the state data cluster.

The output channels are for ADDataFromCh<1..8>. Check the filter property on each output channel reference and
call the AES-201 API to set the filter accordingly.

After the custom device has been configured and deployed, VeriStand will no longer exchange property information
between the host computer and execution host.

Since we implemented the filter as a property, we will call the AES-201 API in the Start case. If the operator wants to
toggle the filter, they must reconfigure the device in System Explorer.

After configuring the hardware, we will request an A/D sample. For this custom device, the Read Data from HW case
will be useful for this operation.

2.1. Implementing a Custom Device 57



VeriStand Custom Device Handbook, Release 1.0.0

Replace the Read Hardware Channels frame with the API call to digitize. Convert the 32-bit raw data to DBL data,
depending on the range of the AES-201.

Send the channel data to the rest of the VeriStand system by writing to the Output Reference.

For flat hierarchies, the reference array corresponds one-to-one with channels. This is because they were created on
the host computer. The first channel created is the 0th element of the array.

58 Chapter 2. Implement the Custom Device



VeriStand Custom Device Handbook, Release 1.0.0

For non-flat hierarchies, the reference array corresponds top-down and one-to-one with channels as they were created.
Channels at the highest level of the hierarchy appear first in the array, then subsequent levels channels appear in the
order they were created.

Robust custom devices do not depend on any particular order of channel references. Unique properties or GUIDs
should be used to ensure the driver VI operates on the correct channel.

By default, the AES-201 inputs are enabled. You must build the custom device, enable filtering on all channels, add it
to a new system definition, and deploy the project.

Check the console for messages to determine if the non-default configuration is active. You should also map the
ADDataFromCh<1..8> channels to a simple graph to ensure they display the expected signals.

2.1. Implementing a Custom Device 59



VeriStand Custom Device Handbook, Release 1.0.0

Now we will process the software enable channels. For this custom device, the Write Data to HW case is useful.

The SWTrig channel is higher than the ADEnCh<1..8> input channels in the hierarchy. Even though SWTrig was
created last, it is the first channel in the input channel reference array.

60 Chapter 2. Implement the Custom Device



VeriStand Custom Device Handbook, Release 1.0.0

We will skip the SWTrig channel reference for now and read the eight enable channels.

Make a call to the AES-201 only if the enable channel value has changed. Enable the hardware channel if the VeriStand
channel does not equal zero.

2.1.6 Channel Change Detection

You can build change detection into the custom device engine so it does not perform actions if the data has not changed.
This will cause differing execution times depending on data.

Note: This is not considered jitter unless the code fails to meet determinism requirements.

There are a variety of change detection methods. We will briefly discuss two of them. They are simple change detection
and change detection with tolerance.

The following LabVIEW code is an example of simple change detection.

2.1. Implementing a Custom Device 61

https://zone.ni.com/reference/en-XX/help/370715P-01/lvrtconcepts/builddeterapps_rt/


VeriStand Custom Device Handbook, Release 1.0.0

Simple change detection can fail due to floating point precision issues. Change detection with tolerance avoids these
precision issues. You should use tolerances that avoid false triggers.

The following LabVIEW code is an example of change detection with tolerance.

Rebuild the device and add eight Boolean controls to the workspace. Map each control to the corresponding
ADEnCh<1..8> channel.

62 Chapter 2. Implement the Custom Device



VeriStand Custom Device Handbook, Release 1.0.0

You should now be able to toggle the channels on and off from the workspace. In this example, disabled channels hold
the last sample.

Planning is very important. Because we thoroughly planned the AES-201 custom device before we started writing
code, it was fairly straightforward to implement.

2.1. Implementing a Custom Device 63



VeriStand Custom Device Handbook, Release 1.0.0

64 Chapter 2. Implement the Custom Device



CHAPTER

THREE

DEBUGGING AND BENCHMARKING

3.1 Debugging and Benchmarking

Use LabVIEW and VeriStand to debug and benchmark custom devices as you would any other code during develop-
ment.

3.1.1 LabVIEW Debugging Techniques

Custom devices are written in LabVIEW code. You can develop, test, and debug this code in LabVIEW before running
the niveristand-custom-device-wizard. Use built-in LabVIEW debugging techniques during development and merge
your resulting LabVIEW code into the custom device framework.

A custom device is one of many parts of the system definition. Behavior of LabVIEW code within the custom device
framework, such as timing, will likely differ from a stand-alone LabVIEW application. You should benchmark the
custom device inside of the VeriStand Engine.

Once custom devices are added to the system definition, they are fully integrated into the VeriStand context. Built-in
LabVIEW debugging techniques will no longer be available.

3.1.2 Console Viewer

The Console Viewer is a subcomponent of the VeriStand Real-Time (RT) Engine.

You can install the Console Viewer to the target with NI Measurement and Automation Explorer (MAX). Once installed,
the component runs a small UDP daemon that allows the operator to view the console. You can access the Console
Viewer from the VeriStand Editor by clicking Tool Launcher » View Console.

Note: You cannot use the Console Viewer on NI Linux Real-Time targets. Instead, connect your NI Linux Real-Time
targets to a computer using a serial port to view the output.

The Console Viewer provides a periodic snapshot of the system definition and resulting CPU usage. The viewer can
also display debugging messages.

65

https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-benchmark-debug/
https://www.ni.com/en-us/support/documentation/supplemental/12/debugging-techniques-in-labview.html
https://www.ni.com/documentation/en/veristand/latest/manual/viewing-console-output/


VeriStand Custom Device Handbook, Release 1.0.0

CPU spikes and transients may not be observable. If the system is busy, the Console Viewer may not update. You can
use other debugging methods for a more accurate indication of resource utilization.

The Console Viewer is also available as a stand-alone add-on to LabVIEW Real-Time. For more information, refer to
Remotely View Console Output of Real-Time Targets.

3.1.3 Custom Error Codes

You can define custom error codes in LabVIEW and distribute them to VeriStand with a custom device.

1. Copy a custom errors.txt file to VeriStand in the <Base>\National Instruments\Shared\Errors\English
directory.

2. Add the file as a dependency in the custom device.

3. Add the file as a dependency in the custom device XML file.

4. (Optional) For RT targets, deploy the errors.txt file to the error directory on target. Error messages will display
in Console Viewer.

For more information, refer to Defining Custom Error Codes to Distribute throughout Your Application.

66 Chapter 3. Debugging and Benchmarking

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x4TjCAI&l=en-US
https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-xml/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/def_custom_error_text/


VeriStand Custom Device Handbook, Release 1.0.0

3.1.4 Printing With the Print Debug Line VI

The recommended method of printing to the console is to use the NI VeriStand - Print Debug Line VI.

This VI works on both Windows and RT execution hosts. Use the optional Attribute input to change the color of the
text. You can also use the optional Add to log file? (F) input to append the string to the VeriStand log file.

To locate this VI in LabVIEW, navigate to Custom Device API » Utilities.

3.1.5 Printing with RT Debug String VI

The RT Debug String VI sends a string to the standard output device.

By default, this VI sends the debug string to the video port. If you have a device capable of serial redirection, the debug
string is sent to the serial port.

To locate this VI in LabVIEW, navigate to Real-Time » RT Utilities.

3.1.6 Telemetry Custom Device

The Telemetry Custom Device supports VeriStand benchmarking by logging system channels and monitoring target
resources. Usage data is logged to a TDMS file on the target that is running the VeriStand Engine.

3.1.7 System Channels

VeriStand includes system channels that provide information on internal processes. Several of these system channels
are useful for benchmarking and debugging.

The following table contains examples of debugging and benchmarking system channels.

System Channel Description
HP Count The number of times the Primary Control Loop reported being late.
HP Loop Duration The duration of the Primary Control Loop in nanoseconds.
LP Count The number of times the Data Processing Loop reported being late.
Model Count The number of times the models have not completed their execution in time.

If the value of the count channels increase over time, the target is not achieving the desired loop rates. You can use the
system channels in conjunction with an alarm or procedure to handle events.

3.1. Debugging and Benchmarking 67

https://github.com/ni/niveristand-telemetry-custom-device/releases
https://www.ni.com/documentation/en/veristand/latest/manual/system-channels/
https://www.ni.com/documentation/en/veristand/latest/manual/add-configure-alarm/
https://www.ni.com/documentation/en/veristand/latest/manual/add-configure-procedure/


VeriStand Custom Device Handbook, Release 1.0.0

3.1.8 System Monitor Custom Device

The System Monitor Custom Device tracks memory resources and CPU usage on an RT target running the VeriStand
Engine. Set the update rate (Hz) in System Explorer to determine how often the custom device checks CPU and memory
usage and sends them to the corresponding channel.

Note: The VeriStand System Monitor can only be used on an RT target.

3.1.9 Distributed System Manager

You can use the NI Distributed System Manager (DSM) to monitor the CPU and memory resources of an RT target.
You must install System State Publisher on the RT target.

This component runs a small daemon that publishes the system state to DSM. For more information, refer to Monitor
RT target resources.

System State Publisher provides a periodic snapshot of utilization. CPU spikes and transients may not be observable.
If the system is busy, DSM may not update. You can use other debugging methods for a more accurate indication of
resource utilization.

3.1.10 Real-Time Trace Viewer

VeriStand provides built-in support for the Real-Time Trace Viewer and Real-Time Trace Viewer VIs. Use the trace
viewer to capture the timing and execution data of a VI and thread events for applications running on an RT target.

To display the Real-Time Trace Viewer in a LabVIEW VI, click Tools » Real-Time Module » Trace Viewer. For
more info on how to use Real-Time Trace Viewer, refer to the LabVIEW Help topic Real-Time Trace Viewer.

3.1.11 Additional Debugging Options for VeriStand

Upon request, NI can provide advanced debugging tools to help you resolve certain custom device issues. These tools
are a last resort when all other debugging options have been exhausted. For more information, contact NI.

68 Chapter 3. Debugging and Benchmarking

https://github.com/ni/niveristand-system-monitor-custom-device/releases
https://zone.ni.com/reference/en-XX/help/372572E-01/sysman/monitoring_resources/
https://zone.ni.com/reference/en-XX/help/372572E-01/sysman/monitoring_resources/
https://zone.ni.com/reference/en-XX/help/370715P-01/lvtracehelp/lv_tracetoolkit_help/
https://zone.ni.com/reference/en-XX/help/370715P-01/lvtrace/tracetoolkitvis_pal/
https://zone.ni.com/reference/en-XX/help/370715P-01/lvtracehelp/lv_tracetoolkit_help/


CHAPTER

FOUR

DISTRIBUTING THE CUSTOM DEVICE

4.1 Distributing the Custom Device

After building, debugging, validating, and benchmarking the custom device, you need to package the device for others
to use.

As with most applications, you can streamline distribution in two ways.

• With an Installer—For more information, refer to the LabVIEW Help topic (Windows) Installer Properties.

• With a Package for Distribution—For more information, refer to the LabVIEW Help topic Creating Packages for
Distribution.

NI recommends distributing the custom device by copying the necessary files into a simple folder hierarchy. The
top-level folder should contain the following items.

1. Build folder - Contains files for operator to copy to the <Common Data>\Custom Devices\VeriStand directory.
This will add the custom device to the system definition.

2. Source folder - Contains the LabVIEW Project used to create the custom device and any supporting libraries and
dependencies required to build the custom device. For example, the AES-201 custom device would ship with
the LabVIEW API and hardware DLL.

3. Readme file - Contains instructions for installing, licensing, using, and modifying the custom device. The file
should also contain contact information if you plan to support the device or a disclaimer if you do not plan to
support the device. The Readme file is a good place to store any benchmarking information.

Note: Do not include the Custom Device API.lvlib files with the distribution. You do not want to replace the library on
the operator’s machine or change the library linking on your machine.

The following image demonstrates the distribution folder hierarchy for the AES-201 custom device.

69

https://zone.ni.com/reference/en-XX/help/371361R-01/lvdialog/installer_tab_windows/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/creating_packages/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/creating_packages/


VeriStand Custom Device Handbook, Release 1.0.0

70 Chapter 4. Distributing the Custom Device



CHAPTER

FIVE

CUSTOM DEVICE TIPS AND TRICKS

5.1 Custom Device Tips and Tricks

Use the following information to help you develop custom devices.

5.1.1 Using Custom Device Engine Events

After deploying a custom device, internal channels exchange data. If the channels are insufficient or overly cumbersome,
you can implement your own communication mechanism.

VeriStand provides access to its own TCP pipe. You do not have to maintain the connection. This pipe facilitates
readable text and byte array data.

In LabVIEW, navigate to NI VeriStand » Custom Device API » Driver Functions to find NI VeriStand - Register
Custom Device Engine Events.vi. This VI provides three dynamic events that can be registered in any VI with a reference
to the custom device.

1. Shut Down

2. Message (Byte Array)

3. Message (String)

The following image displays the VI interface for registering VeriStand Dynamic Events.

71



VeriStand Custom Device Handbook, Release 1.0.0

The two message events activate when NI VeriStand – Send Custom Device Message.vi is called. The following Lab-
VIEW code displays how to send information to VeriStand’s Dynamic Message Events.

72 Chapter 5. Custom Device Tips and Tricks



VeriStand Custom Device Handbook, Release 1.0.0

To view an example of the dynamic event pipe, navigate to the <LabVIEW>\examples\NI VeriStand\Custom
Devices\Communication Example\ directory and open Communication Example Custom Device Project.lvproj.

5.1.2 Processing Channel Data in Blocks

For inline hardware and inline model custom devices with many channels, it is more efficient to read and write channel
data using block data references.

In LabVIEW, navigate to NI VeriStand » Custom Device API » Driver Functions » Data References to find the
following VIs to work with block data references.

• Get Channel Block Data References

• Get Channel Values by Block Data Reference

• Set Channel Values by Block Data Reference

The following initialization code generates a list of output channel references.

5.1. Custom Device Tips and Tricks 73



VeriStand Custom Device Handbook, Release 1.0.0

Instead of output channel references, modify the state data cluster to obtain block references to the output channels.

74 Chapter 5. Custom Device Tips and Tricks



VeriStand Custom Device Handbook, Release 1.0.0

The original version of the custom device automatically creates an index of each channel data reference.

You should modify this code to write the block reference. In the following example, the channel block data references
are written together outside the loop rather than channel-by-channel within the loop.

5.1.3 Working with String Constants

While developing custom devices, property names and GUIDs are represented as strings.

These case-sensitive strings can be difficult to use. GUIDs in particular are long and likely to produce typo errors. Use
LabVIEW global variables or a type definition combo box control instead.

These alternatives have the following considerations.

• Global Variable - Ensure that you have set the correct default value for the control.

• Type Definition Combo Box - On the Properties dialog box, use the Edit Items tab to disable Values match Items.
This control type does not auto-update from its type definition. You must completely populate the control before
using it on a block diagram.

5.1.4 Creating Custom Error Codes

You can define custom error codes in LabVIEW and distribute them to VeriStand with a custom device.

1. Copy a custom errors.txt file to VeriStand in the <Base>\National Instruments\Shared\Errors\English
directory.

2. Add the file as a dependency in the custom device.

3. Add the file as a dependency in the custom device XML file.

4. (Optional) For real-time targets, deploy the errors.txt file to the error directory on target. Error messages will
display in Console Viewer.

For more information, refer to Defining Custom Error Codes to Distribute throughout Your Application.

5.1. Custom Device Tips and Tricks 75

https://zone.ni.com/reference/en-XX/help/371361R-01/lvconcepts/glob_variables/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/creating_type_defs/
https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-xml/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/def_custom_error_text/


VeriStand Custom Device Handbook, Release 1.0.0

5.1.5 Using Utility VIs

In LabVIEW, navigate to NI VeriStand » Custom Device API » Utilities for useful custom device development VIs.

For information on the VIs in this palette, refer to the context help documentation.

5.1.6 Sort Channels by FIFO Location

In LabVIEW, navigate to NI VeriStand » Custom Device API » Utilities to find the Get Channel FIFO Buffer Index.vi.
This VI returns the FIFO buffer index for the input or output channel reference.

Use this function for Asynchronous Custom Device channels to determine what index to read or write in the FIFO
arrays. The VI also returns which FIFO Buffer (Input or Output) the channel will be located in.

Note: This function is only intended for Asynchronous Custom Devices.

You can use this VI in a custom device to read a list of DAQmx thermocouple inputs.

1. Sort the channel references in the order they appear in the custom device FIFO.

2. Configure the DAQmx task so the thermocouple channels are read in the same order as they appear in the FIFO.

There are several advantages to this architecture. The operator is free to add, remove, and reorder channels. Only the
desired channels are configured. This makes writing data to the custom device FIFO efficient.

The following code writes multiple hardware channels directly to the custom device FIFO.

76 Chapter 5. Custom Device Tips and Tricks



VeriStand Custom Device Handbook, Release 1.0.0

The hardware data returns from the DAQmx driver in the same order as the channel references in the asynchronous
custom device FIFO.

5.1.7 Triggering Within the Custom Device

You can set up a custom device to run code when a specified event occurs. Implementing value-triggering is as simple
as comparing AEEnCh<1..8> channel values to the previous iteration.

In LabVIEW, navigate to Signal Processing » Point by Point » Other Functions to find the Boolean Crossing Point
by Point VI. This VI is useful for triggering events.

Recall the Write Data to HW state that reads VeriStand Channels. Add the following code to check the software trigger.

Check the SWTrig channel and handle any transition accordingly.

5.1. Custom Device Tips and Tricks 77

https://zone.ni.com/reference/en-XX/help/371361R-01/ptbypt/boolean_crossing_ptbypt/
https://zone.ni.com/reference/en-XX/help/371361R-01/ptbypt/boolean_crossing_ptbypt/


VeriStand Custom Device Handbook, Release 1.0.0

The triggering VI is useful in asynchronous custom devices that do not execute in line with the primary control loop
(PCL). An asynchronous device might iterate multiple times in a single iteration of the PCL. This triggering VI will
only assert on the desired edge of the transition.

5.1.8 Adding Extra Pages After Creating the Custom Device Project

If your Custom Device requires additional pages for sections or channels, you can specify their names before generating
the LabVIEW project for the device.

Use the niveristand-custom-device-wizard’s Custom Device Extra Page Names control. This tool ensures the follow-
ing.

• The appropriate references are available to the page.

• The necessary declarations go into the Custom Device XML file.

• The Build Specification deploys the page to the correct location.

There are two signs that an extra page has not been added correctly to a custom device.

1. The default section or channel page loads into System Explorer instead of the expected extra page.

2. A System Explorer error message appears. Custom Device Page Error: The following Custom
Device page VI is not executable. The VI might not be found at the correct location,
or it is missing dependencies that it requires to run. Please contact the Custom
Device vendor for more information on this problem.

To add a new page after the framework has been generated, you must manually perform all steps the niveristand-custom-
device-wizard takes. Use LabVIEW Project Explorer to perform the operations.

1. Ensure the device gets the appropriate device reference.

2. Create the page section in the custom device XML file.

3. Modify the configuration build specification.

Note: Incorrect changes to the Custom Device’s XML file can corrupt the system definition.

Ensure Device Has Appropriate Reference

The VeriStand API requires the correct Node Reference input. The VeriStand system is responsible for passing this
reference to the page.

Navigate to Custom Device API.lvlib\Templates\Subpanel Page VI\ for a Page Template VI.

Note: You can copy a page generated by the niveristand-custom-device-wizard, such as the Main page.

Create a XML Page Section

The Custom Device’s XML file tells System Explorer how to load the device files.

1. In Project Explorer, open the custom device XML file.

2. Copy the information between Main Page’s <Pages> and </Pages> declarations.

3. Paste the section immediately below the </Page> declaration that closes the Main Page section.

4. Update the <eng>, <loc>, and <Path> tags for the new page.

5. Update the <GUID> to match the GUID of the extra page you created.

6. Save and close the XML file.

78 Chapter 5. Custom Device Tips and Tricks

https://github.com/ni/niveristand-custom-device-wizard/releases


VeriStand Custom Device Handbook, Release 1.0.0

Modify the Configuration Build Specification

The niveristand-custom-device-wizard scripts two Build Specifications that put the custom device files in the necessary
format and location for System Explorer.

1. Open the Configuration Release’s build specification dialog box.

2. In Source Files, expand the LabVIEW library for your device.

3. Make sure the new page is part of the Always Included section.

4. In Source Files Settings, ensure the new page in the Project Files tree has the destination set to Custom Device
<Name> Folder.

5. Click OK.

6. Save the LabVIEW project.

You must rebuild the Configuration Release and Engine Release build specifications to deploy changes. You can then
use the extra page as if it were generated by the niveristand-custom-device-wizard.

Note: The niveristand-custom-device-wizard is open source. You can examine the code like any other VI.

5.1.9 Updating Custom Device XML

XML Tags define the settings for a custom device. These elements, and non-standard element types, are defined in the
Custom Device.xsd schema. You can locate this file by navigating to the <Common Data>\Custom Devices directory.
Open the file in an XML or text editor to view the schema hierarchy.

The following example line is from the Custom Device.xsd file.

<xs:element minOccurs="0" name="ActionVIOnDelete" type="Path" />

The name of this tag is ActionVIOnDelete. Adding the tag to the custom device XML runs a VI when the operator
deletes the item from System Explorer.

Note: Experimenting with an XML schema is easier in an empty custom device.

For examples on implementing XML features, refer to VeriStand’s built-in components. These components are found
in the <Application Data>\System Explorer\System Explorer Definition Files directory.

If a tag is opened, use the format </tag_name> to close the tag. If a tag must be specified but has no value, use the
format <tag_name /> to open and close the tag at the same time. This format has the same effect as <tag_name>tag
value</tag_name>.

Delete Protection

Add <DeleteProtection>true<DeleteProtection> to any section in the custom device XML to block users from
deleting that item from the System Explorer configuration tree.

5.1. Custom Device Tips and Tricks 79

https://github.com/ni/niveristand-custom-device-wizard
https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-xml-tags/
https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-xml-element-types/
https://www.ni.com/documentation/en/veristand/latest/manual/veristand-directories-aliases/
https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-xml-tags/


VeriStand Custom Device Handbook, Release 1.0.0

Limit Max Custom Device Occurrences

Add <MaxOccurrence>N</MaxOccurrence> to the XML underneath the device type to limit the number of instances
of a custom device in a single System Definition.

Rename Protection

Add <DisallowRenaming>true</DisallowRenaming> below the <Name> tag for any page to prevent the operator
from renaming the item.

5.1.10 Using Action VIs

VeriStand contains eight action VI templates that are triggered by different actions.

The following action VI templates are provided by VeriStand in the Custom Device API library.

ActionVIOnLoad

Executes when VeriStand loads a custom device item into memory. This template helps create action VIs that launch
background processes.

For example, if your custom device requires large amounts of data, you can customize this template to start a daemon
that runs processes or gathers data in the background.

ActionVIOnDeleteRequest

Executes when a user tries to delete an item from the custom device. This template helps create action VIs that prevent
a user from deleting a custom device item or warn a user of the implications of deleting a custom device item.

This template has the following unique parameters.

• Item Ref—A reference to the custom device item whose XML declaration calls this action VI.

• Refs that are about to get deleted—A 1D array of references to the items to be deleted. The 1D array will only
contain one reference. Users can only delete one item at a time in System Explorer.

• Discard reason—An output that captures the user’s reason for deleting the item.

• Discard delete request?—A Boolean to discard the delete request after the action VI finishes executing. If
True, VeriStand will not delete the item. If False, VeriStand will delete the item.

• Additional items to delete—An array of references to additional items to delete. For example, if other custom
device items depend on the item the user wants to delete, you can use this output to automatically delete those
items as well.

ActionVIOnDelete

Executes after a user deletes an item from the custom device. You can use this template to alert users which channel
mappings break when they delete the custom device item. You can also customize the template to reconfigure hardware.

For example, if the user deletes a page that specifies custom configuration data for your hardware, you can have the VI
return the configuration to default settings.

ActionVIOnSystemShutdown

Executes when System Explorer closes. You can customize this template to close hardware connections or to close
daemons you launch from an ActionVIOnLoad VI.

The template has the following unique parameters.

• Device Item Ref—Reference to the custom device item whose XML declaration calls this action VI.

80 Chapter 5. Custom Device Tips and Tricks

https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-xml-tags/
https://www.ni.com/documentation/en/veristand/latest/manual/custom-device-api-library/


VeriStand Custom Device Handbook, Release 1.0.0

• Unload SDF?—Indicates whether or not the system definition was unloaded. Unload SDF? is always True.

• Saved?—Indicates whether or not a user saved the system definition file before closing System Explorer.

• Path—Disk path to the system definition file.

• System Explorer Shutdown?—Indicates whether or not System Explorer closed. This parameter is always
True.

ActionVIOnSave

Executes when a user saves the system definition. For example, you can customize this template to log each time the
custom device is saved.

ActionVIOnDownload

Executes when a user deploys the system definition containing the custom device to a real-time target.

Note: This action VI does not execute if a user deploys the system definition to a Windows target.

This template helps create action VIs that finalize the target configuration after you deploy the system definition.

You can also customize this template to deploy any additional files or dependencies your custom device requires. For
example, if your custom device reads and writes to shared variables, you can deploy those variables.

The template has the following unique parameters.

• Device Item Ref in—A reference to the custom device item whose XML declaration calls this action VI.

• ftp session—The Open FTP session used to download the system definition to the target. You can use this open
session to move additional files to the target.

• System Definition Dir—A path to the system definition file on disk.

• IP Address—The IP address of the target.

• ftp session out—An open FTP session used to download the system definition file to the target.

ActionVIOnPaste

Executes when a user pastes a custom device item. This template helps create action VIs that check channel properties.
For example, if the user pastes a page that configures a target, you can create an action VI to ensure that the new page
does not attempt to reconfigure the target.

You can also customize this template to prompt a user to enter new values for the pasted item. For example, if a user
pastes a page that will conflict with existing pages, you can prompt the user to enter new values for the page.

The template has the following unique parameters.

• Ptr in—A reference to the custom device item whose XML declaration calls this action VI.

• Parent—A reference to the parent of the custom device item whose XML declaration calls this action VI.

• All Ptrs—An array of references to the items the user pasted. You can only select one item to copy. This array
only contains one reference that matches the Ptr in reference.

ActionVIOnCompile

Executes when VeriStand compiles the system definition file.

Note: If you deploy, undeploy, and redeploy a system definition without making changes, this template does not execute.

You can customize this template to finish configuring your hardware. The system definition file compiles when a user
deploys the system definition. This means you can configure your hardware based on the final settings from the system
definition.

5.1. Custom Device Tips and Tricks 81



VeriStand Custom Device Handbook, Release 1.0.0

You can also customize the template to quickly gather host-side settings. For example, often the custom device RT
Engine VI uses properties set in the system definition. You can customize this template to read the values on the host
side. This is faster than reading them from the real-time target.

You can then gather the properties into a single cluster, convert that cluster to a data variant, and write the variant as a
single item property.

5.1.11 Adding Toolbar buttons

A Toolbar button appears in the toolbar of System Explorer. These buttons only appear when displaying the config-
uration page associated with the button.

Within the <Page> tags for an item, you can use the <ButtonList> tag to configure the toolbar buttons that appear
with the item’s configuration page. Each <Button> must include a unique <ID> string that identifies the button. The
toolbar button displays by default.

In each page VI, you can use the Disable Dynamic Button VI and the Enable Dynamic Button VI to dynamically disable
and enable a button for that page based on its unique ID. These VIs are useful when you want the toolbar button to
appear only when certain conditions are true.

These VIs are located in the labview\vi.lib\NI VeriStand\Custom Device API directory.

The following XML schema is an example framework you can use to implement a toolbar button.

82 Chapter 5. Custom Device Tips and Tricks



VeriStand Custom Device Handbook, Release 1.0.0

5.1.12 Adding shortcut menus

A shortcut menu for an item appears when you right-click the item in System Explorer.

Within the <Page> tags for an item, you can use the <RunTimeMenu> tag to configure the shortcut menu for the item.
Each <MenuItem> you add under <RunTimeMenu> includes an <Item2Launch> section. This section specifies a VI
to run when an operator selects the menu item.

The Custom Device API library includes a template for this VI. Navigate to the labview\vi.lib\NI VeriStand\
Custom Device API directory and open RunTimeMenu Custom Item 2 Launch.vit.

The following XML schema is an example framework you can use to implement a shortcut menu.

5.1. Custom Device Tips and Tricks 83



VeriStand Custom Device Handbook, Release 1.0.0

5.2 Scripting APIs

Scripting APIs use LabVIEW VIs to configure custom devices in a VeriStand system definition file.

Depending on how much functionality was made available through scripting, users can change basic settings or fully
configure a custom device. You can develop a scripting API to create flexible and reusable system definition files.

5.2.1 NI Supported Scripting APIs

NI has developed scripting APIs for some custom devices.

One example is the FPGA Addon Scripting API. The following image displays how the API appears in LabVIEW.

The following custom devices also have a scripting API.

• Instrument Addon Scripting API

• Routing and Faulting Scripting API

• Engine Simulation Toolkit Scripting API

84 Chapter 5. Custom Device Tips and Tricks

https://github.com/ni/niveristand-fpga-addon-custom-device/blob/main/Source/Quick%20Start%20Documentation/FPGA%20Addon%20Quick%20Start%20Guide.md#scripting-api
https://github.com/ni/niveristand-instrument-addon-custom-device/blob/main/Source/Quick%20Start%20Documentation/Instrument%20Addon%20Quick%20Start%20Guide.md#scripting-api
https://github.com/ni/niveristand-routing-and-faulting-custom-device/blob/main/Docs/User%20Guide.md#scripting-api
https://github.com/ni/niveristand-engine-simulation-toolkit-custom-device/tree/main/Source/Scripting%20API


VeriStand Custom Device Handbook, Release 1.0.0

• Communications Bus Template Scripting API

• Ballard ARINC 429 Scripting API

• Ballard MIL-STD-1553 Scripting API

5.2. Scripting APIs 85

https://github.com/ni/niveristand-communications-bus-template/tree/main/Source/Custom%20Device%20Support/Scripting
https://github.com/ni/niveristand-ballard-arinc429-custom-device/blob/main/Docs/User%20Guide/User%20Guide.md#scripting-the-custom-device-configuration
https://github.com/ni/niveristand-ballard-milStd1553-custom-device/tree/main/Source/Scripting%20Examples

	Introduction
	Introduction to Custom Devices
	What is a Custom Device?
	Table of Directories and Aliases:
	Custom Device Framework
	Configuration
	Initialization VI
	Main Page
	Engine
	Custom Code
	Custom Device XML

	When do you Need a Custom Device?
	3rd Party Hardware
	Unsupported Measurement or Generation Mode
	Feature
	Custom Device Risk Analysis
	LabVIEW Application Development
	LabVIEW RT Application Development
	VeriStand Background
	Hardware Driver Development
	Testing

	Planning the Custom Device
	Channels
	Add Custom Device Channel VI
	Other Useful Channel VIs

	Properties
	Set Item Property VI
	Get Item Property VI
	Remove Item Property VI
	Other Useful Property VIs

	Custom Device Decimation
	Hierarchy
	Add Custom Device Section VI
	Hierarchy Examples
	Flat Hierarchy
	Nested Hierarchy


	Pages
	Extra Pages
	Page
	GUID
	XML Declaration
	Build Specification


	Custom Device Types
	Asynchronous
	Inline Hardware Interface
	Initialize Case
	Start Case
	Read Data from HW Case
	Write Data to HW Case
	Close Case

	Inline-Async Hardware Interface
	Inline Model Interface
	Execute Model Case

	Inline Timing and Sync
	Asynchronous Timing and Sync
	Outline of PCL Iteration
	Parallel Mode
	Low Latency Mode



	Implement the Custom Device
	Implementing a Custom Device
	Determine Custom Device Feasibility
	Customer Needs
	Risk Analysis
	Development Specifications

	Build the Template Project
	Build the Configuration
	Edit the Initialization VI
	Override the Default Page
	Edit the Extra Page
	Allow Simultaneous Calls to the Same Extra Page
	Final Initialization VI
	Configure the Main Page
	Build the Final Configuration

	Build the Driver
	Add Custom Device Dependencies
	Channel Change Detection


	Debugging and Benchmarking
	Debugging and Benchmarking
	LabVIEW Debugging Techniques
	Console Viewer
	Custom Error Codes
	Printing With the Print Debug Line VI
	Printing with RT Debug String VI
	Telemetry Custom Device
	System Channels
	System Monitor Custom Device
	Distributed System Manager
	Real-Time Trace Viewer
	Additional Debugging Options for VeriStand


	Distributing the Custom Device
	Distributing the Custom Device

	Custom Device Tips and Tricks
	Custom Device Tips and Tricks
	Using Custom Device Engine Events
	Processing Channel Data in Blocks
	Working with String Constants
	Creating Custom Error Codes
	Using Utility VIs
	Sort Channels by FIFO Location
	Triggering Within the Custom Device
	Adding Extra Pages After Creating the Custom Device Project
	Ensure Device Has Appropriate Reference
	Create a XML Page Section
	Modify the Configuration Build Specification

	Updating Custom Device XML
	Delete Protection
	Limit Max Custom Device Occurrences
	Rename Protection

	Using Action VIs
	Adding Toolbar buttons
	Adding shortcut menus

	Scripting APIs
	NI Supported Scripting APIs



